ELECTRODE BOMBARDING INSTRUCTIONS

For proper bombarding, we strongly recommend the use of high precision meters including mA meter, temperature gauge and vacuum gauge.

Prepare the tubing:

- 1. Before splicing (joining), both the electrode and the glass tube should be evenly preheated.
- 2. When splicing fluorescent coated tubing, the powder inside the tube should be wiped away about 1/16 in. from the end of the tube.
- 3. A complete annealing process should be done after splicing to prevent future crack.

Bombarding procedure:

- 1. Follow the chart below for bombarding current of A, B, C & D
- 1. Connect unit to manifold with a suitable high vacuum connection. (It is not advisable to use rubber hose)
- 2. Test the entire system for leakage.
- 3. Open main stopcock and evacuate unit to hard vacuum. Close main valve and gauge stopcocks.
- 4. Backfill with 3.5mm (Torr) of Argon gas. (1 Torr = 133.3 Pa)
- 5. Turn on bombarder and adjust current to A. Heat glass to 150°C while maintaining 3-4mm pressure.
- 6. At 150°C adjust pressure to 2 mm and increase current to B.
- 7. At 200°C adjust pressure to 2mm and increase current to C.
- 8. At 225°C to 250°C adjust pressure to 2mm and increase current to D.
- 9. While maintaining ~2mm pressure, continue bombarding until the entire metal shell of the electrodes are a *bright, incandescent, almost translucent, light shade of orange* (an illuminated pumpkin orange) *the entire length of the shell.*
- 10. Turn the bombarder off and completely open the main valve to evacuate the tube. Turn on the vacuum gauge, but wait a few moments before opening the vacuum gauge stopcock.
- 11. When the tube has cooled to ~70°C, and the best possible vacuum has been obtained (preferably less than 1 micron) the unit is ready for filling.
- 12. Close the vacuum gauge stopcock and turn the vacuum gauge off. Close the main stopcock.
- 13. Fill the unit with the desired gas to the correct pressure for the size of tubing used. Seal unit off from manifold and age-in.

Model	10CA	12SCA	12CA	13SCA	13CA	14SCA	14CA	15SCA	15CA	15CA-60	18CA
	10CAT	12SCAT	12CAT	13SCAT	13CAT	14SCAT	14CAT	15SCAT	15CAT	15CAT-60	18CAT
Length &	4-6FT	4-6FT	8FT	4-6FT	8FT	4-6FT	8FT	4-6FT	8FT	8FT	8FT
Diameter	12mm	12mm	12mm	12mm	12mm	12mm	12mm	15mm	15mm	15mm	15mm
Α	150mA	200mA	200mA	200mA	200mA	200mA	200mA	200mA	200mA	200mA	200mA
В	200mA	250mA	300mA	250mA	300mA	250mA	300mA	250mA	300mA	300mA	300mA
С	250mA	300mA	400mA	300mA	400mA	300mA	400mA	300mA	400mA	400mA	400mA
D	400mA	400mA	500mA	400mA	500mA	400mA	500mA	400mA	500mA	650mA	700mA

Note: Bombarder size, Length of tubing, glass diameter, and vacuum pump efficiency will all affect the bombarding procedure. The above instructions are based upon processing tubes at the length & diameter illustrated in the chart above. Longer units or double pumping will require lower initial pressure and higher initial current to begin bombarding.